CORRECTIONS - FIRST EDITION - MARCH 12 2007

- 1. Page 4, line -2: Replace "consequences" by "consequence".
- 2. Page 8, add line 3: "All topological spaces in the sequel are assumed to be Hausdorff".
- 3. Page 41, line 10: Normal(0,I) and not Normal(0,1).
- 4. Page 60, line -1: replace Π_{λ} by Π_{λ} .
- 5. Page 61, line -4: should be "unique non negative left eigenvectors".
- 6. Page 68, line 5: replace $H(q) \triangleq \dots$ by $H(q) \triangleq -\dots$
- 7. Page 84 line -2: not necessarily.
- 8. Page 86 line -11: replace $\Sigma = \mathbb{R}$ by $\Sigma = [0, 1]$.
- 9. Page 90, Theorem 3.6.8, part (a): add "for all sufficiently large n"
- 10. Page 111, line 17: Replace \mathcal{X} by \mathcal{Y} .
- 11. Page 130, line -13: Add "log" after the second equality to read

$$= \log \int_{\mathcal{X}} e^{\lambda(x)} \mu_{\epsilon}(dx) , \quad \lambda \in \mathcal{X}^* ,$$

- 12. Page 134, Figure 4.5.2: the lines are not of $\langle \lambda_i, x \rangle g(\lambda_i) = 0$ but rather of $\langle \lambda_i, x \rangle g(\lambda_i) = c_i$, where $c_i = f(x_i)$ and x_i is the point of tangency of the line with slope λ_i to the graph of $f(\cdot)$.
- 13. Page 152, line -10: replace

$$\mathcal{AC} \stackrel{\triangle}{=} \Big\{ \phi \in C([0,1]) : \sum_{\ell=1}^{k} |t_{\ell} - t_{\ell-1}| \to 0 \implies \sum_{\ell=1}^{k} |\phi(t_{\ell}) - \phi(t_{\ell-1})| \to 0 \Big\}.$$

by

$$\begin{split} \mathcal{AC} & \stackrel{\triangle}{=} \Big\{ \phi \in C([0,1]) : \\ & \sum_{\ell=1}^k |t_\ell - s_\ell| \to 0 \ , s_\ell < t_\ell \le s_{\ell+1} < t_{\ell+1} \implies \sum_{\ell=1}^k |\phi(t_\ell) - \phi(s_\ell)| \to 0 \Big\}. \end{split}$$

14. Page 156, line -4 until Page 157, line 4: Replace text by

Finally, suppose that $\phi \in \mathcal{X}$ and $\phi \notin \mathcal{AC}$. Then there exist $\delta > 0$ and $\{s_1^n < t_1^n \le \cdots \le s_{k_n}^n < t_{k_n}^n\}$ such that $\sum_{\ell=1}^{k_n} (t_\ell^n - s_\ell^n) \to 0$, while $\sum_{\ell=1}^{k_n} |\phi(t_\ell^n) - \phi(s_\ell^n)| \ge \delta$. Note that, since Λ^* is nonnegative,

$$\begin{split} I_{\mathcal{X}}(\phi) &= \sup_{0 < t_1 < t_2 < \dots < t_k \atop \lambda_1, \dots, \lambda_k \in \mathbb{R}^d} \sum_{\ell=1}^k \left[\langle \lambda_\ell, \phi(t_\ell) - \phi(t_{\ell-1}) \rangle - (t_\ell - t_{\ell-1}) \Lambda(\lambda_\ell) \right] \\ &\geq \sup_{0 \le s_1 < t_1 \le s_2 < t_2 \le \dots \le s_k < t_k \atop \lambda_1, \dots, \lambda_k \in \mathbb{R}^d} \sum_{\ell=1}^k \left[\langle \lambda_\ell, \phi(t_\ell) - \phi(s_\ell) \rangle - (t_\ell - s_\ell) \Lambda(\lambda_\ell) \right]. \end{split}$$

Hence, for $t_{\ell} = t_{\ell}^{n}$, $s_{\ell} = s_{\ell}^{n}$, and λ_{ℓ} proportional to $\phi(t_{\ell}) - \phi(s_{\ell})$ and with $|\lambda_{\ell}| = \rho$, the following bound is obtained:

$$\begin{split} I_{\mathcal{X}}(\phi) \geq \\ & \limsup_{n \to \infty} \Bigl\{ \rho \sum_{\ell=1}^{k_n} \, |\phi(t_\ell^n) - \phi(s_\ell^n)| - [\sup_{|\lambda| = \rho} \Lambda(\lambda)] \, \sum_{\ell=1}^{k_n} (t_\ell^n - s_\ell^n) \Bigr\} \, \geq \rho \delta \, . \end{split}$$

15. Page 157, proof of Lemma 5.1.14: The argument is incomplete, for one could have both sides of the equality before last in the page infinite when $\nu((-\infty,\bar{x}))>0$. Rather, after (5.1.15), for any $M<\bar{x}$ such that $\nu((-\infty,M])>0$ integration by parts yields

$$\int_{M}^{\bar{x}} \frac{\nu(dx)}{\nu((-\infty, x])^{\delta}} \le \frac{1}{1 - \delta}.$$

Using monotone convergence, one may then set $M = -\infty$.

- 16. Page 161, line 11: Replace $\dot{q}^2(t)$ by $|\dot{q}(t)|^2$.
- 17. Page 161, line 14 and Page 163, line 9: Replace $\dot{\phi}^2(t)$ by $|\dot{\phi}(t)|^2$.
- 18. Page 161, line 10 and Page 163, line 12: add "all absolutely continuous functions with value 0 at 0"
- 19. Page 164, (5.2.15): the right hand side should be $2e^{-(\delta-E)^2/2V}$, where

$$V = \sup_{0 \le s, t \le 1} E|X_{t,s}|^2 .$$

- 20. Page 189, display in remark: add) before the transpose sign in the expression for $I_x(f)$.
- 21. Page 192, line -6: Replace $|y^2|$ by $|y|^2$.
- 22. Page 208, line 7: Replace $x \in G$ by $x \in B_{\rho}$.

- 23. Page 216, line 6: omit -.
- 24. Page 242, line 14: Add "is weakly" before "closed".
- 25. Page 250, line 9 and in (6.3.7): replace N by N'.
- 26. Page 283, line 9: replace $\mathcal X$ by $\mathcal Y$.
- 27. Page 298, line -9, remove one) before the period.
- 28. Page 313, line 11: replace "were" by "where".
- 29. Page 322, line 11: add $f(t,x):[0,\infty)\times {\rm I\!R}^d \to {\rm I\!R}^d.$
- 30. Page 331, item [KK86]: replace "Kellenberg" by "Kallenberg".